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Extended matrix Gelfand–Dickey hierarchies: reduction to
classical Lie algebras

Lászĺo Feh́er†§ and Ian Marshall‡‖
† Physikalisches Institut der Universität Bonn, Nussallee 12, 53115 Bonn, Germany
‡ Department of Mathematics, Leeds University, Leeds LS2 9JT, UK

Received 4 April 1997

Abstract. The Drinfeld–Sokolov reduction method has been used to associate extensions of
the matrixr-KdV system with the Lie algebragln. We present reductions of these systems to
the fixed point sets of involutive Poisson maps, implementing the reduction ofgln to classical
Lie algebras of typeB, C, D. Modifications corresponding, in the first place to factorization of
the Lax operator, and then to Wakimoto realizations of the current algebra components of the
factorization, are also described.

1. Introduction

We consider examples of constrained KP hierarchies having a Lax operator of the form

L = `+ z+(∂ + w)−1z− with ` = 1r∂r + u1∂
r−1+ · · · + ur (1)

where1 is a constant diagonal matrix with1r having distinct, non-zero entries,u0, . . . , ur
are in g̃lp, z+ ∈ m̃at(p × s), z− ∈ m̃at(s × p) andw is in g̃ls . Here mat(m × n) denotes

the set ofm × n complex matrices and for any vector spaceV , Ṽ stands forC∞(S1, V ).
PDO(m×n) denotes the set of pseudodifferential operators with coefficients inm̃at(m×n).
We shall use standard splitting PDO= PDO+ +PDO− of the space of pseudodifferential
operators as a vector space direct sum of differential operators and integration operators.
We also use the standard trace-form ‘res’ on PDO given by res

∑
ai∂

i = a−1.
We call the systems associated with Lax operators of the form given in (1)systems of

extended Gelfand–Dickey type. These systems are defined for any integersr, p > 1 and
s > 0. For the simplicity of language, we shall formulate our statements keeping in mind
the generic case for whichr > 1 ands > 0. Note, however, that all statements are also
valid in the special cases for which eitherr = 1 or s = 0, even though some of them
become trivial. The special cases for whichr > 1 ands = 0 reproduce the standardp× p
matrix Gelfand–Dickey systems. The cases withr = 1 correspond to generalized AKNS
systems.

Recently, there have been several papers devoted to systems of the above type [1–8]. In
[9] it was shown how hierarchies with a Lax operator of the form in (1) can be obtained by
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the Drinfeld–Sokolov (DS) reduction method. Specifically, a graded Heisenberg subalgebra
of the loop algebragln ⊗ C[λ, λ−1] is associated with the partition

n = pr + s =
p times︷ ︸︸ ︷

r + · · · + r +
s times︷ ︸︸ ︷

1+ · · · + 1 (2)

and a generalized KdV hierarchy having the Lax operator in (1) results from the application
of the DS reduction procedure [10] (see also [12–14]) with respect to a grade-one element
from this Heisenberg subalgebra, ifr > 1. In the r = 1 special case the DS reduction
becomes trivial, but interesting results remain valid.

The Lax operator usually studied in the literature fors > 0 is obtained from (1) by
choosingp = 1 andw = 0. In fact, settingw = 0 is not advantageous since this Dirac
reduction of the phase space leads to non-local Poisson brackets.

In this paper we investigate the discrete symmetries given by involutive Poisson maps
on the phase space of an extended Gelfand–Dickey system. Reduction to the fixed point
set of such a map yields systems which arise from using the classical Lie algebrasB, C,
D in the DS approach.

The further purpose of the paper is to study modifications of the above systems. In
principle, modification arises via two possible mechanisms. The first can be viewed as an
application of the well known factorization approach of Kupershmidt–Wilson [15] (see also
[16]). The phase space of the resulting modified system is a direct product whose factors
carry linear Poisson structures, typically given by current algebras. The second is a novel
construction which involves the so-called Wakimoto realizations of the current algebras, as
was described in [17]. We will show that the two mechanisms are in fact closely related.

We shall use the abbreviation ‘PB’ for Poisson bracket and shall refer to the first and
second Adler–Gelfand–Dickey PBs on PDO(p × p) [18, 19] as the ‘AGD PBs’.

2. Extended Gelfand–Dickey hierarchies

In this section we list the main elements of the theory of systems of extended Gelfand–
Dickey type. Many of the results are fully described in [9], whilst at the same time much
of this theory is standard and goes back to the work of Adler [18], Gelfand–Dickey [19]
and Drinfeld and Sokolov [10].

LetMDS† be the space of quadruples(`, z+, z−, w) that appear in (1), i.e. as a space

MDS = (g̃lp)r × m̃at(p × s)× m̃at(s × p)× g̃ls . (3)

The functions onMDS of interest are local functionals that have the formH =∫
S1 h(u1, . . . , ur , z+, z−, w) with h being a differential polynomial in the entries of the

matrices in its arguments. There are two compatible PBs onMDS, given by the following
formulae for the respective Hamiltonian vector fields:

X1
H (`) =

[
`,
δH

δ`

]
+

X1
H (z±) = ±

δH

δz∓
X1
H (w) = 0 (4)

† In the Hamiltonian reduction approach [9]MDS represented a so-called DS gauge: we have kept this
nomenclature here.
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and

X2
H (`) =

(
`
δH

δ`

)
+
`− `

(
δH

δ`
`

)
+
+
(
`
δH

δz−
(∂ + w)−1z−

)
+
−
(
z+(∂ + w)−1 δH

δz+
`

)
+

X2
H (z+) = res

(
`

(
δH

δ`
z+ + δH

δz−

)
(∂ + w)−1

)
− z+ δH

δw

X2
H (z−) = − res

(
(∂ + w)−1

(
z−
δH

δ`
+ δH

δz+

)
`

)
+ δH
δw

z−

X2
H (w) =

δH

δz+
z+ − z− δH

δz−
+
[
δH

δw
,w

]
−
(
δH

δw

)′
.

(5)

Here the gradients are defined by

d

dt

∣∣∣∣
t=0

H(`+ tδ`, z± + tδz±, w + tδw) = Tr

(
δH

δ`
δ`

)
+
∫
S1

tr

(
δH

δz+
δz+ + δH

δz−
δz− + δH

δw
δw

)
(6)

where Tr stands for
∫

tr res andδH
δ`
= ∑r

i=1 ∂
i−r−1 δH

δui
. For anyA ∈ PDO, we have the

decompositionA = A+ + A− defined by the standard splitting of PDO.
The mapπ :MDS→ PDO(p× p), which assigns the pseudodifferential operatorL in

(1) to the point(`, z+, z−, w) in MDS, is a Poisson map with respect to the PBs defined
by formulae (4) and (5) onMDS and the first and second AGD PBs on PDO(p × p),
respectively. It follows thatM = π(MDS)—the set of Lax operators of the form (1)—is a
Poisson subspace of PDO(p × p) with respect to the first and second AGD PBs.

To define the commuting flows onMDS we proceed as follows. We first diagonalize
the Lax operatorL = π(`, z+, z−, w). That is to say we write

L = gL̂g−1 (7)

for g an element of PDO(p × p) of the formg = 1p +
∑∞

k=1 gk∂
−k, and we require that

L̂ is diagonal andg is off-diagonal, which determines them uniquely. ForQ a constant,
diagonalp × p matrix, let the functionsHQ

j be defined by

H
Q

0 (`, z±, w) = Tr(L̂Q(1∂)−r )

H
Q
j (`, z±, w) =

r

j
Tr
(
L̂j/rQ

)
for j = 1, 2, . . . .

(8)

The set of functionsHQ
j for j = 0, 1, 2, . . . andQ arbitrary yields commuting Hamiltonians

onMDS. The corresponding Hamiltonian vector fields are conveniently expressed in the
following form:

X2
j,Q(L) =X1

j+r,Q(L) = [(gQg−1Lj/r)+, L]

X2
j,Q(z+) =X1

j+r,Q(z+) = res(gQg−1Lj/rz+(∂ + w)−1)

X2
j,Q(z−) =X1

j+r,Q(z−) = − res((∂ + w)−1z−gQg−1Lj/r)

X2
j,Q(w) =X1

j+r,Q(w) = 0 ∀j = 0, 1, . . . .

(9)

These commuting vector fields generate the flows of the extended Gelfand–Dickey hierarchy.
If r = p = 1 ands = 0, then the flows are trivial, and we henceforth exclude this case.
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3. Modifications of extended Gelfand–Dickey hierarchies

We next apply a two-step factorization procedure to the Lax operatorL that leads to
modifications of the flows in (9). Bymodification, we mean that there is a non-invertible
Poisson map given in terms of a differential polynomial formula, from the Poisson space of
the new (modified) variables toMDS. The Hamiltonians of the modified flows are the pull-
backs of the functionsHQ

j in (8). The first step of the factorization procedure is rather well
known [4–6, 9]. The second step was mentioned in passing in [9] but details were omitted.
Here we also explain the relationship of this second step to the Wakimoto realizations of
the current algebra based on the general linear Lie algebra.

Let us introduce the space2 = (g̃lp)r−1×g̃lp+s and endow it with the current algebra PB
on each of the components. The points of this space are denoted as(θ1, . . . , θr−1, θr ) ∈ 2.
For local functionalsF,H on2 we thus have

{F,H }(θ1, . . . , θr−1, θr ) =
r∑
i=1

∫
tr

(
θi

[
δF

δθi
,
δH

δθi

]
− δF
δθi

(
δH

δθi

)′)
. (10)

There is a Poisson mapµ from 2 toMDS described in [9]. It is important to note thatµ
is Poisson with respect to thesecondPoisson structure onMDS given by (5), andnot with
respect to the first Poisson structure given by (4). We shall not specifyµ here, but we give
the form of the composition8 = π ◦ µ : 2→ M ⊂ PDO(p × p).

Let us write the matrixθr ∈ g̃lp+s in the form

θr =
(
a b

c d

)
(11)

wherea ∈ g̃lp, b ∈ m̃at(p × s), c ∈ m̃at(s × p), d ∈ g̃ls . Fix an integerκ between 0 and
r − 1. Then8 is given by

L = 1(∂ + θ1)1(∂ + θ2)

· · ·1(∂ + θκ)1[∂ + a − b(∂ + d)−1c]1(∂ + θκ+1) · · ·1(∂ + θr−1). (12)

For κ = 0 there are no factors of the form(∂ + θi) on the left, while forκ = r − 1 there
are none on the right. Of course different choices ofκ correspond to different definitions
of µ but all of them are related by invertible transformations. Hence, all of the apparently
different modifications for the different choices ofκ are equivalent.

As the composition of two Poisson maps,8 is guaranteed to be a Poisson map with
respect to the second AGD PB on PDO(p × p). A direct proof of the Poisson property of
8 can be obtained using the following results.

Lemma 1.The multiplication map: PDO×PDO → PDO defines a Poisson map with
respect to the second AGD PB on PDO.

Lemma 2.{∂ + θ |θ ∈ g̃lp} ⊂ PDO(p×p) is a Poisson subspace with respect to the second
AGD PB, which on this subspace coincides with the current algebra PB appearing in (10)
for i 6= r.
Lemma 3.The mapη : g̃lp+s → PDO(p × p) defined by

η

(
a b

c d

)
= ∂ + a − b(∂ + d)−1c (13)

is a Poisson map with respect to the current algebra PB ong̃lp+s that occurs in (10) for
i = r and the second AGD PB on PDO(p × p).
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The first two lemmas seem to be part of the general knowledge in the field of integrable
hierarchies. Lemma 3 was proved in [9]. The modified flows are defined on the phase
space2 by pulling back the HamiltoniansHQ

j in (8) by means of the mapµ.
For reasons explained in [9] (see also [1, 2]), ifs 6= 0 the factor

K := ∂ + a − b(∂ + d)−1c (14)

entering the factorization ofL in (12) is called the ‘AKNS factor’. Then the flows on2
can themselves be modified by factorizingK as follows

K = ∂ + a − b(∂ + d)−1c = (∂ + ϑ0)(1p − γ (∂ + ϑ1+ βγ )−1β) (15)

for

(ϑ0, ϑ1, β, γ ) ∈ g̃lp × g̃ls × S whereS := m̃at(s × p)× m̃at(p × s). (16)

We let the spacẽglp × g̃ls × S be endowed with the natural direct sum Poisson structure.
That is if F andH are two local functionals on this space, we have

{F,H }(ϑ0, ϑ1, β, γ ) =
∑
i=0,1

∫
S1

tr

(
ϑi

[
δF

δϑi
,
δH

δϑi

]
− δF

δϑi

(
δH

δϑi

)′)
+
∫
S1

tr

(
δF

δβ

δH

δγ
− δH
δβ

δF

δγ

)
. (17)

The factorization specified in (15) can be lifted to a mappingν : g̃lp × g̃ls × S → g̃lp+s
whose equation is

a = ϑ0− γβ d = ϑ1+ βγ b = ϑ0γ − γϑ1− γβγ + γ ′ c = β (18)

and direct calculation proves the following.

Proposition 4.If g̃lp × g̃ls × S and g̃lp+s are endowed with the PB in (17) and with the
current algebra PB, respectively, then the mapν determined by (18) is a Poisson map.

Define the space2′ = (g̃lp)r−1× g̃lp× g̃ls×S and endow it with the product PB given

by the current algebra PB on
(
g̃lp
)r−1

together with the PB in (17). Thenν gives rise to a

Poisson mapν ′ : 2′ → 2, which acts asν on g̃lp×g̃ls×S and as the identity on the
(
g̃lp
)r−1

factor. This map provides us with a modification of the system on2 = (g̃lp)r−1 × g̃lp+s .
The resulting modified system is the same as the one engendered by the composite Poisson
mapµ ◦ ν ′ : 2′ →MDS.

We now explain that the mapν defined by (18) can be used to generate a huge family of
‘realizations’ of the current algebra PB based onglm for anym. For this we simply repeat
the construction for an arbitrary partition ofm of the formm = m1+m2. This amounts to

writing θ ∈ g̃lm asθ =
(
a b

c d

)
with a ∈ g̃lm1

etc, and expressinga, b, c, d by formula

(18) in which we then insert the variables

(ϑ0, ϑ1, β, γ ) ∈ g̃lm1
× g̃lm2

× Sm1,m2 with Sm1,m2 := m̃at(m2×m1)× m̃at(m1×m2).

(19)

The PBs of these new variables defined similarly to (17) then imply the current algebra
PB for the variableθ , that is we have a Poisson map as in proposition 4. Repeating the
construction iteratively for the current algebra factors, we can associate a Poisson map

νm1,m2,...,ml : g̃lm1
× g̃lm2

× · · · × g̃lml × Sm1,m2,...,ml → g̃lm (20)
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with any partitionm = m1+m2+ · · · +ml . The procedure gives that as a vector space

Sm1,m2,...,ml = C̃d × C̃d for 2d = m2−m2
1−m2

2− · · · −m2
l (21)

and it carries the corresponding canonical PB. The precise formula of the map in (20)
depends on the route whereby the final partition ofm is reached through the iterative
procedure. However, it was proved in [17] (in a more general context) that the various
Poisson maps that follow are all related by invertible Poisson maps. The map in (20) is
known as a generalized (classical) Wakimoto realization of the current algebra PB based on
glm. The standard Wakimoto realization belongs to the partition ofm for which allmi = 1.
An explicit formula for the Wakimoto realizations was derived in [17] by different methods.
Further results and background on Wakimoto realizations can also be found in [17] and
references therein.

We can use any of the Wakimoto realizations in (20) to modify any of the current
algebra factors that appear in the factorization ofL in (12). This yields a large family of
modifications of the extended Gelfand–Dickey hierarchies.

4. Discrete reductions

We now search for discrete symmetries of the extended Gelfand–Dickey systems. The
compatible PBs on the phase spaceMDS = {(`, z+, z−, w)} are given by

{F,H }∗i =X i
H (F ) = Tr

(
δF

δ`
X i
H (`)

)
+
∫
S1

tr

(
δF

δz+
X i
H (z+)+

δF

δz−
X i
H (z−)+

δF

δw
X i
H (w)

)
(22)

for arbitrary local functionalsF,H onMDS, whereX i
H are defined by (4), (5) fori = 1, 2.

Specifically, we look for symmetries given by some involutive map

σ :MDS→MDS σ 2 = id (23)

which leaves the PBs invariant,

{F ◦ σ,H ◦ σ }∗i = {F,H }∗i ◦ σ i = 1, 2. (24)

We take the following ansatz forσ . Letm ∈ GLp and letq ∈ GLs , i.e.m andq are constant,
invertible, respectivelyp × p ands × s matrices. Define the mapσm,q :MDS→MDS by

σm,q :


`

z+
z−
w

 7→

m`†m−1

−mzt−q−1

qzt+m
−1

−qwtq−1

 (25)

where`† is given by the standard adjoint operation on PDO(p × p),

`† = (−1)r1r∂r +
r∑
i=1

(−1)r−i∂r−iuti for ` = 1r∂r +
r∑
i=1

ui∂
r−i . (26)

It is not hard to verify thatσm,q satisfies (24) whenever it maps the phase spaceMDS to
itself, which is ensured by the condition

m1rm−1 = (−1)r1r . (27a)
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The involutivity of σm,q leads to the further conditions

mt = εmm εm = ±1 qt = εqq εq = ±1 with εmεq = −1. (27b)

Note that if εm = −1 thenp must beevenand whenεq = −1 thens must be even. For
any natural numbersa andb define thea × a and 2b × 2b matricesηa and�2b by

ηa =
a∑
i=1

ei,a+1−i �2b =
b∑
i=1

ei,2b+1−i −
2b∑

i=b+1

ei,2b+1−i (28a)

where theei,j are elementary matrices of appropriate size having a single non-zero entry 1
at theij position. Letξa denote an arbitrarya × a diagonal, invertible matrix subject to

ηaξaηa = −ξa (28b)

which means thatξa is antisymmetric under transpose with respect to the antidiagonal.
Using this notation, we have the following types of solutions forσm,q . (The notion of a
representative example is justified later in this section.)
• Type C1: r = 2ρ even,∀p, m is diagonal andq is arbitrary withεq = −1, s = 2l

even. Representative example:σ1,�2l .
• Type C2: r = (2ρ + 1) odd,p = 2k even,1 is such thatηp1ηp = −1, m = ξp�p

andq is arbitrary withεq = −1, s = 2l even. Representative example:σ1�2k ,�2l .
• Type B: r = (2ρ + 1) odd, p = 2k even,1 is such thatηp1ηp = −1, m = ξpηp

andq is arbitrary withεq = +1, s = 2l + 1 odd. Representative example:σ1η2k ,η2l+1.
• Type D: r = (2ρ + 1) odd, p = 2k even,1 is such thatηp1ηp = −1, m = ξpηp

andq is arbitrary withεq = +1, s = 2l even. Representative example:σ1η2k ,η2l .
Note that the conditionηp1ηp = −1, which is present except for type C1, requires

that 1 must have the form1 = diag(11, . . . , 1k,−1k, . . . ,−11), wherep = 2k and
1r
i 6= ±1r

j 6= 0 for i 6= j since1r must have distinct, non-zero entries. The Lie algebraic
meaning of the notation referring to the various types will be explained below.

Given an involutive symmetryσ = σm,q , one finds thatσ : L 7→ mL†m−1 for the
Lax operatorL in (1). It is not hard to see that this implies that the set of commuting
Hamiltonians defined by equation (8) admits a basis consisting of functions which are
invariant or anti-invariant (that change sign) with respect to the action ofσ . On account of
(24), if H ◦σ = H then the Hamiltonian vector fieldsX i

H are tangent to the fixed point set
Mσ

DS ⊂MDS of σ . Hence, the flows of a ‘discrete-reduced hierarchy’ may be defined by
restricting the flows generated onMDS by theσ -invariant Hamiltonians in (8) to the fixed
point setMσ

DS. These flows are bihamiltonian with respect to the restricted Hamiltonians
and a naturally induced bihamiltonian structure onMσ

DS. The induced PBs onMσ
DS are

defined by restricting the original PBs of functions ofσ -invariant linear combinations of
the components of̀, z+, z−, w—which may be regarded as coordinates onMσ

DS—toMσ
DS.

The Lax operator of the discrete-reduced system belongs to

Mσ = π(Mσ
DS) = {L ∈ M|L = mL†m−1}. (29)

For fixedp, r, s and a given symmetry type C1, C2, B or D the various possible choices
of m andq definingσm,q are equivalent from the point of view of the discrete reduction.
In fact, the fixed point sets corresponding to two different choices are always related by a
Poisson map ofMDS given by

(`, z+, z−, w) 7→ (m̄`m̄−1, m̄z+q̄−1, q̄z−m̄−1, q̄wq̄−1) (30)

with some constant matrices̄m ∈ GLp and q̄ ∈ GLs . It is in this sense that the examples
we gave for the symmetries of various types arerepresentative examples.
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We mentioned that the extended Gelfand–Dickey system follows from an application of
the DS reduction procedure to the Lie algebragln. As explained in particular cases in [20],
the above discrete reductions are then induced by the reductions ofgln to a simple complex
Lie algebraG of B, C orD type. This means that the discrete-reduced systems are associated
with graded semisimple elements of minimal positive grade from certain graded Heisenberg
subalgebras ofG ⊗ C[λ, λ−1] by means of DS reduction (see also [12, 13] and the review
in [14]). Since the graded Heisenberg subalgebras ofG ⊗ C[λ, λ−1] are classified [11] by
the conjugacy classes [21] in the Weyl groupW (G) of G, we can label these generalized
KdV hierarchies by the respective conjugacy classes inW (G). The conjugacy classes that
occur here can be parametrized (as in [20, 21]) by certain ‘signed partitions’. The extended
Gelfand–Dickey system itself belongs to the conjugacy class(r, . . . , r,1, . . . ,1) of W (gln)

given by the partition in (2). Using this notation, we find that the above discrete symmetries
operate on the generalized KdV systems according to the following reduction rules:

σ1,�2l : (

p times︷ ︸︸ ︷
2ρ, . . . ,2ρ,

2l times︷ ︸︸ ︷
1, . . . ,1) ⊂W (gl2(pρ+l)) H⇒ (

p times︷ ︸︸ ︷
ρ̄, . . . , ρ̄,

l times︷ ︸︸ ︷
1, . . . ,1) ⊂W (Cpρ+l)

σ1�2k ,�2l : (
2k times︷ ︸︸ ︷
r, . . . , r,

2l times︷ ︸︸ ︷
1, . . . ,1) ⊂W (gl2(kr+l)) H⇒ (

k times︷ ︸︸ ︷
r, . . . , r,

l times︷ ︸︸ ︷
1, . . . ,1) ⊂W (Ckr+l)

σ1η2k ,η2l+1 : (
2k times︷ ︸︸ ︷
r, . . . , r,

2l+1 times︷ ︸︸ ︷
1, . . . ,1) ⊂W (gl2(kr+l)+1) H⇒ (

k times︷ ︸︸ ︷
r, . . . , r,

l times︷ ︸︸ ︷
1, . . . ,1) ⊂W (Bkr+l)

σ1η2k ,η2l : (
2k times︷ ︸︸ ︷
r, . . . , r,

2l times︷ ︸︸ ︷
1, . . . ,1) ⊂W (gl2(kr+l)) H⇒ (

k times︷ ︸︸ ︷
r, . . . , r,

l times︷ ︸︸ ︷
1, . . . ,1) ⊂W (Dkr+l)

(31)

where l > 0 is arbitrary andr = 2ρ + 1 is odd. With the aid of case-by-case inspection,
this result was established in [20] forr > 1 andl = 0. Since the remaining cases can be
treated in a similar way, we omit the proof (which simply amounts to diagram chasing).

One may try to lift the discrete symmetries given above to analogous symmetries
of the modified systems described in section 3. Considering the modified systems that
correspond toL in (12), one needs to find a lifted transformation ruleσ̂ : 2→ 2 for which
µ ◦ σ̂ = σ ◦ µ, whereµ : 2 →MDS is the generalized Miura map. It is clear that such
a local map exists if and only if the modification is symmetric in the sense that the same
number of(∂+ θ) factors appears to the left and to the right of the special factorK in (12).
This modification is available in cases C2, B and D, for whichr = 2ρ + 1 and we have

L = 1(∂ + θ1) · · ·1(∂ + θρ)1[∂ + a − b(∂ + d)−1c]1(∂ + θρ+1) · · ·1(∂ + θ2ρ) (32)

by choosingκ = ρ in (12). The transformation ruleθi 7→ θ σ̂i (0, 1, . . . ,2ρ) is then not
difficult to determine by using the requirement that it must implyL 7→ Lσ = mL†m−1 for
L in (32). Of courseσ̂ is a Poisson map, and the corresponding discrete-reduced hierarchy
on the fixed point set2σ̂ ⊂ 2 provides a modification of the hierarchy onMσ

DS ⊂MDS.
We leave it to the reader as an exercise to write down the explicit formula ofσ̂ .

For the discrete symmetry of type C1 withl > 0, a factorized Lax operator of the
symmetric form is only available after performing the second factorization ofK according
to (15). In this caser = 2ρ, and by choosingκ = ρ−1 in (12) (and renaming the variables)
we indeed obtain the symmetric factorization

L = 1(∂ + θ1) · · ·1(∂ + θρ)[1p − γ (∂ + ϑ + βγ )−1β]1(∂ + θρ+1) · · ·1(∂ + θ2ρ). (33)

The modified variablesθi (i = 1, . . . ,2ρ) andϑ, β, γ now belong to the respective factors
of the space

2′ = (g̃lp)2ρ × g̃l2l × m̃at(2l × p)× m̃at(p × 2l). (34)
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The lifted action of the discrete symmetry on2′ is easy to determine explicitly using the
fact that forL in (33) it must implyL 7→ Lσ with σ = σ1,�2l .

5. Concluding remarks

In section 4 we saw that many KdV-type hierarchies that are associated with certain
conjugacy classes in the Weyl groupW (G) for G a classical simple Lie algebra by
generalized DS reduction [12–14] are also obtained as discrete reductions of extended matrix
Gelfand–Dickey hierarchies. Note, however, that not all KdV-type hierarchies based on a
classical Lie algebra are discrete reductions of hierarchies associated withgln. For example,
a pseudodifferential operator model of the KdV system associated with the primitive regular
conjugacy class(p̄, p̄) in W (D2p) by generalized DS reduction is not known [20].

In the DS approach modifications of KdV-type systems usually correspond to gauge
transformations from certain ‘diagonal-type gauges’ parametrized by the modified variables
to a ‘DS gauge’ parametrized by the KdV fields. The mapµ : 2→MDS was obtained in
[9] by using this method. The modificationν ′ : 2′ → 2 mentioned after proposition 4 also
permits interpretation as a gauge transformation in the DS approach. Moreover, the specific
factorizations ofL in (32) and (33) that admit a local lifting of the relevant discrete symmetry
have a clear interpretation. Namely, these modifications correspond to gauge sections that
are mapped to themselves by the original discrete-symmetry transformation that operates on
the first-order matrix differential operator variable used in the DS approach. More details
on the way discrete symmetries occur in the DS framework can be found in [20].
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