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Extended matrix Gelfand—Dickey hierarchies: reduction to
classical Lie algebras
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Abstract. The Drinfeld—Sokolov reduction method has been used to associate extensions of
the matrixr-KdV system with the Lie algebragl,. We present reductions of these systems to
the fixed point sets of involutive Poisson maps, implementing the reductigs, db classical

Lie algebras of type3, C, D. Modifications corresponding, in the first place to factorization of
the Lax operator, and then to Wakimoto realizations of the current algebra components of the
factorization, are also described.

1. Introduction

We consider examples of constrained KP hierarchies having a Lax operator of the form
L=0+z,0+w) 1z with € = A"9" +u1d" 14+ 4 u, (1)

whereé is a constant diagonal matrix with” having distinct, non-zero entriesy, . .. , u,
are ingl,, z. € Mat(p x 5), z— € mal(s x p) andw is in gl,. Here matm x n) denotes
the set ofm x n complex matrices and for any vector spaégV stands forC® (S, V).
PDO(m x n) denotes the set of pseudodifferential operators with coefficientsifin x n).
We shall use standard splitting PD© PDO, + PDO_ of the space of pseudodifferential
operators as a vector space direct sum of differential operators and integration operators.
We also use the standard trace-form ‘res’ on PDO given by tes)’ = a_;.

We call the systems associated with Lax operators of the form given isygtgms of
extended Gelfand-Dickey typ&hese systems are defined for any integers > 1 and
s > 0. For the simplicity of language, we shall formulate our statements keeping in mind
the generic case for which > 1 ands > 0. Note, however, that all statements are also
valid in the special cases for which either= 1 or s = 0, even though some of them
become trivial. The special cases for whick- 1 ands = 0 reproduce the standaydx p
matrix Gelfand-Dickey systems. The cases witk= 1 correspond to generalized AKNS
systems.

Recently, there have been several papers devoted to systems of the above type [1-8]. In
[9] it was shown how hierarchies with a Lax operator of the form in (1) can be obtained by

§ Permanent address: Department of Theoretical Physizsed Attila University, H-6720 Szeged, Hungary.
E-mail address: feher@avzwO1.physik.uni-bonn.de

| E-mail address: amt6im@amsta.leeds.ac.uk

0305-4470/97/165815+10$19.5@C) 1997 IOP Publishing Ltd 5815



5816 L Fehér and | Marshall

the Drinfeld—Sokolov (DS) reduction method. Specifically, a graded Heisenberg subalgebra
of the loop algebral, ® C[x, A7!] is associated with the partition

p times s times

n=pr+s=r+---+r4+1+-.--41 (2)

and a generalized KdV hierarchy having the Lax operator in (1) results from the application
of the DS reduction procedure [10] (see also [12—-14]) with respect to a grade-one element
from this Heisenberg subalgebra,rif> 1. In ther = 1 special case the DS reduction
becomes trivial, but interesting results remain valid.

The Lax operator usually studied in the literature for- 0 is obtained from (1) by
choosingp = 1 andw = 0. In fact, settingw = 0 is not advantageous since this Dirac
reduction of the phase space leads to non-local Poisson brackets.

In this paper we investigate the discrete symmetries given by involutive Poisson maps
on the phase space of an extended Gelfand—Dickey system. Reduction to the fixed point
set of such a map yields systems which arise from using the classical Lie algeb€gs
D in the DS approach.

The further purpose of the paper is to study modifications of the above systems. In
principle, modification arises via two possible mechanisms. The first can be viewed as an
application of the well known factorization approach of Kupershmidt—Wilson [15] (see also
[16]). The phase space of the resulting modified system is a direct product whose factors
carry linear Poisson structures, typically given by current algebras. The second is a novel
construction which involves the so-called Wakimoto realizations of the current algebras, as
was described in [17]. We will show that the two mechanisms are in fact closely related.

We shall use the abbreviation ‘PB’ for Poisson bracket and shall refer to the first and
second Adler—-Gelfand-Dickey PBs on PQOx p) [18,19] as the ‘AGD PBs'.

2. Extended Gelfand—Dickey hierarchies

In this section we list the main elements of the theory of systems of extended Gelfand—
Dickey type. Many of the results are fully described in [9], whilst at the same time much
of this theory is standard and goes back to the work of Adler [18], Gelfand—Dickey [19]
and Drinfeld and Sokolov [10].

Let Mpst be the space of quadruplés z.., z—, w) that appear in (1), i.e. as a space

Mps = (g1,)" x Mal(p x 5) x Mals x p) x gl,. 3

The functions onMps of interest are local functionals that have the forkh =
fslh(ul, ..., U, 74, 7o, w) With k& being a differential polynomial in the entries of the
matrices in its arguments. There are two compatible PBa4s%, given by the following
formulae for the respective Hamiltonian vector fields:

6H 6H
X (0) = [e, M} X7(z4) = * e X3 (w)=0 @)
+

1 In the Hamiltonian reduction approach [9Yps represented a so-called DS gauge: we have kept this
nomenclature here.
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and
x20 = (27 e (20} 4+ (2754wt @+w)y
=\ e ), se ), T \Ta 0T ) TS5 T,
SH SH SH
X2y =res( e —z 4+ — )J@+w) ) -z —
Y4 dz— Sw ®)
X2%2(z.)=—res| (@ +w)?t 8H+5—H ¢ +8—H
H=) = s T oz sw
(SH SH [8H SHY
X2 — | —w| ().
H(W) =g e 81_+[8w w] (Sw)
Here the gradients are defined by
H(l+ 180,75 + 18 +t5w) =Tr oH o0
. ) , W w) = "o
dr|,_, kIO 5¢
SH SH §H
+/ —0z4 + —dz- + —dw (6)
Ky (SZ+ 5 — Sw

where Tr stands forf trres and’f = >7/_; 8"~ ~*¢Z. For anyA e PDO, we have the
decompositiond = A, + A_ defined by the standard splitting of PDO.

The mapr : Mps — PDQO(p x p), which assigns the pseudodifferential operdtan
(1) to the point(¢, z4+, z—, w) in Mps, is a Poisson map with respect to the PBs defined
by formulae (4) and (5) omMps and the first and second AGD PBs on PQOx p),
respectively. It follows thall = = (Mps)—the set of Lax operators of the form (1)—is a
Poisson subspace of PD@x p) with respect to the first and second AGD PBs.

To define the commuting flows oMps we proceed as follows. We first diagonalize
the Lax operatol. = (¢, z+, z_, w). That is to say we write

L=glg™? @)

for ¢ an element of PD@ x p) of the formg = 1, + Y2, g0 %, and we require that

Lis diagonal andg is off-diagonal, which determines them uniquely. F@ra constant,
diagonalp x p matrix, let the functions'{jQ be defined by

HE(C, 74, w) = TH(LO(AD)™)

. e}
HE( 2wy =S Tr(L7Q)  forj=12.... ®
J

The set of functionsHjQ for j =0,1,2,...andQ arbitrary yields commuting Hamiltonians
on Mps. The corresponding Hamiltonian vector fields are conveniently expressed in the
following form:

XFo(L) = +r o) =[(gQg L"), L]
; XPo(es) = ,+r 0(z4) =resg Qg 'L 2 (3 4+ w)™)

j Q(Z ) = j+r o(z-) = —req(d + w) tz_gQg L")
X7 pw) =X}, () = Vji=01,....

©)

These commuting vector fields generate the flows of the extended Gelfand—Dickey hierarchy.
If r = p =1 ands =0, then the flows are trivial, and we henceforth exclude this case.
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3. Modifications of extended Gelfand-Dickey hierarchies

We next apply a two-step factorization procedure to the Lax operatthat leads to
modifications of the flows in (9). Bynodification we mean that there is a non-invertible
Poisson map given in terms of a differential polynomial formula, from the Poisson space of
the new (modified) variables t&1ps. The Hamiltonians of the modified flows are the pull-
backs of the function:HjQ in (8). The first step of the factorization procedure is rather well
known [4-6,9]. The second step was mentioned in passing in [9] but details were omitted.
Here we also explain the relationship of this second step to the Wakimoto realizations of
the current algebra based on the general linear Lie algebra.

Let us introduce the spaée = (glp)"lxglpH and endow it with the current algebra PB
on each of the components. The points of this space are denotéd as , 6,_1,6,) € ©.
For local functionalsF, H on ® we thus have

r SF 8H SF (SHY
F9H 07"'59}’—’07' = t 0, sy o —_ . 10
e w00 ;/r< [69,- «se,} 8@(69,-)) (10)

There is a Poisson mgp from © to Mps described in [9]. It is important to note that
is Poisson with respect to tteecondPoisson structure oM ps given by (5), anchot with
respect to the first Poisson structure given by (4). We shall not spedifgre, but we give
the form of the compositio® =7 o : ® — M C PDO(p x p).

Let us write the matri, € gl in the form

p+s

6, = (‘j, Z) (11)

wherea € gl,, b € mai(p x s), ¢ € Mals x p), d € gl,. Fix an integer between 0 and
r — 1. Then® is given by

L=A®@+6)A0 +6)
o A@+0IA[D +a—b@+d)AD +Oer) - A@+6,21).  (12)

For « = 0 there are no factors of the for@d + ;) on the left, while forc = r — 1 there
are none on the right. Of course different choicescaforrespond to different definitions
of n but all of them are related by invertible transformations. Hence, all of the apparently
different modifications for the different choices ofare equivalent.

As the composition of two Poisson mapB,is guaranteed to be a Poisson map with
respect to the second AGD PB on PDOx p). A direct proof of the Poisson property of
@ can be obtained using the following results.

Lemma 1.The multiplication map: PD& PDO — PDO defines a Poisson map with
respect to the second AGD PB on PDO.

Lemma 2.{0 + 616 € ;,711,} c PDO(p x p) is a Poisson subspace with respect to the second
AGD PB, which on this subspace coincides with the current algebra PB appearing in (10)
fori £ r.

~

Lemma 3.The mapn : gl,., — PDQO(p x p) defined by

p+s

n(? Z):B+a—b(8+d)‘lc (13)

is a Poisson map with respect to the current algebra P@NZQQ_Y that occurs in (10) for
i = r and the second AGD PB on PR@x p).
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The first two lemmas seem to be part of the general knowledge in the field of integrable
hierarchies. Lemma 3 was proved in [9]. The modified flows are defined on the phase
space® by pulling back the HamiltonianHjQ in (8) by means of the map.

For reasons explained in [9] (see also [1, 2])s # O the factor

K:=304+a—b@+d (14)

entering the factorization of. in (12) is called the ‘AKNS factor’. Then the flows o@
can themselves be modified by factorizikgas follows

K=d+a—-b@+d) c=0+00)1, —y@+091+By)H) (15)
for
(90,91, B, ) € gl, x gl, x S whereS = mats x p) x mat(p x s). (16)

We let the spacélp X ;,715 x S be endowed with the natural direct sum Poisson structure.
That is if F and H are two local functionals on this space, we have

(F. H) (9. 9. )—Z/tr o [3F 8HT oF SHY
’ 0, V1, 1)/ - g1 2 ﬁ’r‘ﬁl 61}1 80[

i=0,1
SFSH SHSGF
—|—/tr S (17)
st \ép 3y 8B oy

The factorization specified in (15) can be lifted to a mappinggl, x g/, x S — gl
whose equation is

a=1 —yp d =1+ By b=y —ydr—yBy +v' c=p (18)
and direct calculation proves the following.

p+s

Proposition 4.1f gl, x gl, x S andgl,,, are endowed with the PB in (17) and with the
current algebra PB, respectively, then the nragetermined by (18) is a Poisson map.

Define the spac®’ = (g~lp)r7l X glp x gl, x S and endow it with the product PB given
by the current algebra PB c(rg%)"l together with the PB in (17). Thengives rise to a

Poisson map’ : ® — ©, which acts as on gNZI, xgls xS and as the identity on tk(@,,)"_l

factor. This map provides us with a modification of the systentosa ((g:lp)“l X glpﬂ.

The resulting modified system is the same as the one engendered by the composite Poisson
mapuov : ® — Mps.

We now explain that the mapdefined by (18) can be used to generate a huge family of
‘realizations’ of the current algebra PB based gy for anym. For this we simply repeat
the construction for an arbitrary partition of of the formm = m; + m,. This amounts to
b

writing 6 € gl,, asf = ) witha e gl,,, etc, and expressing, b, ¢, d by formula

(18) in which we then insert the variables

(90, 91, B, V) € Ly, X &Ly, X Smsmy With S, o, = Matima x m1) x Matimy x my).
(19)

The PBs of these new variables defined similarly to (17) then imply the current algebra
PB for the variable, that is we have a Poisson map as in proposition 4. Repeating the
construction iteratively for the current algebra factors, we can associate a Poisson map

Vinymeoomy - 8Ly X 8Ly X -+ X &ly, X Spiymg,oom; = 8l (20)
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with any partitionm = m1 + m2 + - - - + m;. The procedure gives that as a vector space

Sy = C4 x C for 2d = m* —m? —m5 —--- — m? (21)

and it carries the corresponding canonical PB. The precise formula of the map in (20)
depends on the route whereby the final partitionnofis reached through the iterative
procedure. However, it was proved in [17] (in a more general context) that the various
Poisson maps that follow are all related by invertible Poisson maps. The map in (20) is
known as a generalized (classical) Wakimoto realization of the current algebra PB based on
gl The standard Wakimoto realization belongs to the partitiom é6r which allm; = 1.
An explicit formula for the Wakimoto realizations was derived in [17] by different methods.
Further results and background on Wakimoto realizations can also be found in [17] and
references therein.

We can use any of the Wakimoto realizations in (20) to modify any of the current
algebra factors that appear in the factorizationLoih (12). This yields a large family of
modifications of the extended Gelfand—Dickey hierarchies.

4. Discrete reductions

We now search for discrete symmetries of the extended Gelfand-Dickey systems. The
compatible PBs on the phase spaehks = {(¢, z4+, z—, w)} are given by

(F,HYf = X} (F)=Tr (iﬁxﬂm)
§F _, §F _, §F _,
+/S1tr<52+XH(Z+)+8Z_XH(z)+6wXH(w)) (22)

for arbitrary local functionals”, H on Mps, where X, are defined by (4), (5) far = 1, 2.
Specifically, we look for symmetries given by some involutive map

o Mps— Mps o?=id (23)
which leaves the PBs invariant,
{(Foo,Hoo} ={F,H}f oo i=12 (24)

We take the following ansatz fer. Letm € GL, andletg € GL,, i.e.m andqg are constant,
invertible, respectivelyp x p ands x s matrices. Define the mag, , : Mps — Mps by

14 meim=1
-1
. i+ _mZiq 2
Omyg - . [ qzim_l (25)
w _qwtq—l

where¢! is given by the standard adjoint operation on RPp& p),
0= (=1)'A + ) (-1 0 for ¢ = A™9" + Y u;d" . (26)
i=1 i=1

It is not hard to verify thab,, , satisfies (24) whenever it maps the phase spatigs to
itself, which is ensured by the condition

mA'm™t = (=1)"A". (27a)
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The involutivity of o, , leads to the further conditions
m' = e,m €n =+1 q' =¢€4q €, ==+1 with €,,¢, = —1. (270)

Note that ife,, = —1 thenp must beevenand whene, = —1 thens must be even. For
any natural numberg andb define thea x a and 2 x 2b matricesn, and 2, by

a b 2b
Na = Ze’?”*l‘i Qg = Zei,2b+1—i - Z €; 2p+1—i (289)
i=1 i=1 i=b+1
where thee; ; are elementary matrices of appropriate size having a single non-zero entry 1
at theij position. Leté, denote an arbitrary x a diagonal, invertible matrix subject to

Na&alla = —a (28b)

which means that, is antisymmetric under transpose with respect to the antidiagonal.
Using this notation, we have the following types of solutions égr,. (The notion of a
representative example is justified later in this section.)

e Type Cl:r = 2p even,Vp, m is diagonal and; is arbitrary withe, = -1, s = 2/
even. Representative examptes o, .

e Type C2:r = (2p + 1) odd, p = 2k even,A is such that),An, = —A, m = §,Q,
andgq is arbitrary withe, = —1, s = 2/ even. Representative examplei,,, o, -

e Type B:r = (20 + 1) odd, p = 2k even, A is such thaty,An, = —A, m = &,1n,
andgq is arbitrary withe, = 4+1, s = 2/ + 1 odd. Representative examplei,,, ;... -

e Type D:r = (2p+ 1) odd, p = 2k even, A is such that),An, = —A, m = &,1n,
andg is arbitrary withe, = +1, s = 2/ even. Representative examptes,,, ,,, -

Note that the conditiom,An, = —A, which is present except for type C1, requires
that A must have the formA = diag(As, ..., Ay, —Ag, ..., —A7), wherep = 2k and
Al # £AT#0 fori # j since A" must have distinct, non-zero entries. The Lie algebraic
meaning of the notation referring to the various types will be explained below.

Given an involutive symmetry = o,,,, one finds thatr : L — mLim~! for the
Lax operatorL in (1). It is not hard to see that this implies that the set of commuting
Hamiltonians defined by equation (8) admits a basis consisting of functions which are
invariant or anti-invariant (that change sign) with respect to the actian @n account of
(24), if H oo = H then the Hamiltonian vector fieldX’, are tangent to the fixed point set
Mg C Mps of 0. Hence, the flows of a ‘discrete-reduced hierarchy’ may be defined by
restricting the flows generated owips by the o-invariant Hamiltonians in (8) to the fixed
point set M7g. These flows are bihamiltonian with respect to the restricted Hamiltonians
and a naturally induced bihamiltonian structure ®fg. The induced PBs oiMyg are
defined by restricting the original PBs of functions @finvariant linear combinations of
the components of, z,, z_, w—which may be regarded as coordinates/ef§—to MZ.
The Lax operator of the discrete-reduced system belongs to

M® = (M%) ={L € M|L =mL'm™}. (29)

For fixedp, r, s and a given symmetry type C1, C2, B or D the various possible choices
of m andq definingo,, , are equivalent from the point of view of the discrete reduction.
In fact, the fixed point sets corresponding to two different choices are always related by a
Poisson map oMps given by

(0, 24, 2, w) > (lm ™, mz g Gzom™t, qwg ™) (30)

with some constant matrices € GL, andg € GL,. It is in this sense that the examples
we gave for the symmetries of various types apresentative examples
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We mentioned that the extended Gelfand-Dickey system follows from an application of
the DS reduction procedure to the Lie algepfa As explained in particular cases in [20],
the above discrete reductions are then induced by the reductigriis tf a simple complex
Lie algebrag of B, C or D type. This means that the discrete-reduced systems are associated
with graded semisimple elements of minimal positive grade from certain graded Heisenberg
subalgebras off ® C[x, 7] by means of DS reduction (see also [12,13] and the review
in [14]). Since the graded Heisenberg subalgebrag§ ef C[Ax, »71] are classified [11] by
the conjugacy classes [21] in the Weyl groWd(G) of G, we can label these generalized
KdV hierarchies by the respective conjugacy classe®ifG). The conjugacy classes that
occur here can be parametrized (as in [20, 21]) by certain ‘signed partitions’. The extended
Gelfand-Dickey system itself belongs to the conjugacy dass ., r, 1, ..., 1) of W(gl,)
given by the partition in (2). Using this notation, we find that the above discrete symmetries
operate on the generalized KdV systems according to the following reduction rules:

p times 2/ times p times | times
e N N —— —
ongy (2o, 20,100, CW(@Lgpp+n) = (0, .-, p, 1, .0, 1) T WI(Cpppr)
2k times 2 times k times [ times
— PN e
UAQZk,QZJ (r,...,?, 17"-71) C W(gIZ(kr+l)):> (ra-"v?v 1"'~71) CW(C](T"rl) (31)
2k times 2+1 times k times [ times
— e, T —— | ——
Oanpnmsr s Fr oo 1,000, 0) C W(glorsn41) = (7, ..., 7,1, ..., 1) C W(Biy1)
2% times 2 times k times [ times
——— T — e, T
Oanp - (1o 71,000 1) C W(glogrty) = (7, ..., 7,1, ..., 1) C W(Dip1)

wherel > 0 is arbitrary and- = 2p + 1 is odd. With the aid of case-by-case inspection,

this result was established in [20] fer> 1 and! = 0. Since the remaining cases can be

treated in a similar way, we omit the proof (which simply amounts to diagram chasing).
One may try to lift the discrete symmetries given above to analogous symmetries

of the modified systems described in section 3. Considering the modified systems that

correspond td. in (12), one needs to find a lifted transformation réle ® — ©® for which

wod =o ou, Wherep : ® - Mpg is the generalized Miura map. It is clear that such

alocal map exists if and only if the modification is symmetric in the sense that the same

number of(d + 6) factors appears to the left and to the right of the special faktar (12).

This modification is available in cases C2, B and D, for whick 2o + 1 and we have

L=A@+6) - A@+60,)A[0 +a—b® +d) ] AWD +0,11) - - AD + 62) (32)

by choosingc = p in (12). The transformation rulg; — Gf (0,1,...,2p) is then not
difficult to determine by using the requirement that it must imply> L® = mLfm=* for
L in (32). Of courses is a Poisson map, and the corresponding discrete-reduced hierarchy
on the fixed point se®’ c ® provides a modification of the hierarchy owilgs C Mps.
We leave it to the reader as an exercise to write down the explicit formua of

For the discrete symmetry of type C1 with> 0, a factorized Lax operator of the
symmetric form is only available after performing the second factorizatioki @iccording
to (15). In this case = 2p, and by choosing = p—1 in (12) (and renaming the variables)
we indeed obtain the symmetric factorization

L=A@+0)---AQ@+6,)[1, —y@+9+ BY)1BIA® + Op+1) -+~ A(D +625).  (33)

The modified variables; (i =1, ..., 2p) and¥, 8, y now belong to the respective factors
of the space

© = (g1,)* x gly x Ma2l x p) x mat(p x 2I). (34)
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The lifted action of the discrete symmetry @ is easy to determine explicitly using the
fact that forL in (33) it must implyL +— L? with 0 = o g, -

5. Concluding remarks

In section 4 we saw that many KdV-type hierarchies that are associated with certain
conjugacy classes in the Weyl grod% (G) for G a classical simple Lie algebra by
generalized DS reduction [12—14] are also obtained as discrete reductions of extended matrix
Gelfand-Dickey hierarchies. Note, however, that not all KdV-type hierarchies based on a
classical Lie algebra are discrete reductions of hierarchies associategl witfor example,

a pseudodifferential operator model of the KdV system associated with the primitive regular
conjugacy clasgp, p) in W(Dy,) by generalized DS reduction is not known [20].

In the DS approach modifications of KdV-type systems usually correspond to gauge
transformations from certain ‘diagonal-type gauges’ parametrized by the modified variables
to a ‘DS gauge’ parametrized by the KdV fields. The map® — Mps was obtained in
[9] by using this method. The modificatiari: ® — ® mentioned after proposition 4 also
permits interpretation as a gauge transformation in the DS approach. Moreover, the specific
factorizations ofL in (32) and (33) that admit a local lifting of the relevant discrete symmetry
have a clear interpretation. Namely, these modifications correspond to gauge sections that
are mapped to themselves by the original discrete-symmetry transformation that operates on
the first-order matrix differential operator variable used in the DS approach. More details
on the way discrete symmetries occur in the DS framework can be found in [20].
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